Statistical Analysis of Multilingual Text Corpus and Development of Language Models
نویسندگان
چکیده
This paper presents two studies, first a statistical analysis for three languages i.e. Hindi, Punjabi and Nepali and the other, development of language models for three Indian languages i.e. Indian English, Punjabi and Nepali. The main objective of this study is to find distinction among these languages and development of language models for their identification. Detailed statistical analysis have been done to compute the information about entropy, perplexity, vocabulary growth rate etc. Based on statistical features a comparative analysis has been done to find the similarities and differences among these languages. Subsequently an effort has been made to develop a trigram model of Indian English, Punjabi and Nepali. A corpus of 500000 words of each language has been collected and used to develop their models (unigram, bigram and trigram models). The models have been tried in two different databasesParallel corpora of French and English and Nonparallel corpora of Indian English, Punjabi and Nepali. In the second case, the performance of the model is comparable. Usage of JAVA platform has provided a special effect for dealing with a very large database with high computational speed. Furthermore various enhancive concepts like Smoothing, Discounting, Backoff, and Interpolation have been included for the designing of an effective model. The results obtained from this experiment have been described. The information can be useful for development of Automatic Speech Language Identification System. Keyword–Statistical Analysis, Trigram Model, Multilingual Corpus, Language Models
منابع مشابه
Active Learning for Multilingual Statistical Machine Translation
Statistical machine translation (SMT) models require bilingual corpora for training, and these corpora are often multilingual with parallel text in multiple languages simultaneously. We introduce an active learning task of adding a new language to an existing multilingual set of parallel text and constructing high quality MT systems, from each language in the collection into this new target lan...
متن کاملThe Development of the Multilingual LUNA Corpus for Spoken Language System Porting
The development of annotated corpora is a critical process in the development of speech applications for multiple target languages. While the technology to develop a monolingual speech application has reached satisfactory results (in terms of performance and effort), porting an existing application from a source language to a target language is still a very expensive task. In this paper we addr...
متن کاملBuilding and Modelling Multilingual Subjective Corpora
Building multilingual opinionated models requires multilingual corpora annotated with opinion labels. Unfortunately, such kind of corpora are rare. We consider opinions in this work as subjective or objective. In this paper, we introduce an annotation method that can be reliably transferred across topic domains and across languages. The method starts by building a classifier that annotates sent...
متن کاملCorpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملSentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora
We address the problem of performing polarity classification on Twitter over different languages, focusing on English and Spanish, comparing three techniques: (1) a monolingual model which knows the language in which the opinion is written, (2) a monolingual model that acts based on the decision provided by a language identification tool and (3) a multilingual model trained on a multilingual da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014